Disjoint cocircuits in matroids with large rank

نویسندگان

  • James F. Geelen
  • Bert Gerards
  • Geoff Whittle
چکیده

We prove that, for any positive integers n; k and q; there exists an integer R such that, if M is a matroid with no MðKnÞor U2;qþ2-minor, then either M has a collection of k disjoint cocircuits or M has rank at most R: Applied to the class of cographic matroids, this result implies the edge-disjoint version of the Erdös–Pósa Theorem. r 2002 Elsevier Science (USA). All rights reserved. AMS 1991 subject classifications: 05B35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Erdös-Pósa property for matroid circuits

The number of disjoint cocircuits in a matroid is bounded by its rank. There are, however, matroids with arbitrarily large rank that do not contain two disjoint cocircuits; consider, for example, M(Kn) and Un,2n. Also the bicircular matroids B(Kn) have arbitrarily large rank and have no 3 disjoint cocircuits. We prove that for each k and n there exists a constant c such that, if M is a matroid ...

متن کامل

Small cocircuits in matroids

We prove that, for any positive integers k, n, and q, if M is a simple matroid that has neither a U2,q+2nor an M(Kn)minor and M has sufficiently large rank, then M has a cocircuit of size at most r(M)/k.

متن کامل

Regular Matroids with Graphic Cocircuits

In this paper we examine the effect of removing cocircuits from regular matroids and we focus on the case in which such a removal always results in a graphic matroid. The first main result, given in section 3, is that a regular matroid with graphic cocircuits is signed-graphic if and only if it does not contain two specific minors. This provides a useful connection between graphic, regular and ...

متن کامل

RDÖS - P ÓSA PROPERTY FOR MATROID CIRCUITS by Jim Geelen and Kasper

The number of disjoint co-circuits in a matroid is bounded by its rank. There are, however, matroids with arbitrarily large rank that do not contain two disjoint co-circuits; consider, for example, M(Kn) and Un,2n. Also the bicircular matroids B(Kn) have arbitrarily large rank and have no 3 disjoint co-circuits. We prove that for each k and n there exists a constant c such that, if M is a matro...

متن کامل

A proof of McKee's eulerian-bipartite characterization

A proof is given of the result about binary matroids that implies that a connected graph is Eulerian if and only if every edge lies in an odd number of circuits, and a graph is bipartite if and only if every edge lies in an odd number of cocircuits (minimal cutsets). A proof is also given of the result that the edge set of every graph can be expressed as a disjoint union of circuits and cocircu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2003